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1. (a) We'll show that there exist two coordinate maps ρ : Rm → M and

ψ : Rn → N such that ψ−1 ◦ ϕ ◦ ρ is an injective map. Note that Since any

open ball in Rk is homeomorphic to Rk itself, we can assume that ρ, ψ are

actually maps from U, V open balls to M.N respectively. First we take any two

coordinate maps g, h for M,N respectively. Because f is an immersion and g, h

are di�eomorphisms we have thatDiff(ψ−1◦ϕ◦ρ) is injective, so we can assume

WLOG that the di�erential is given by a matrix of the form
(
Im
0

)
(otherwise

we change the basis). Consider then the map T : U × Rn−m → V given by

T (z, t) = ψ−1 ◦ ϕ ◦ ρ(z) + (0, t), then by construction its di�erential at ρ−1(x)

is In, and in particular invertible. Therefore by the inverse function theorem

we have thar T is invertible in some neighborhood of ρ−1(x) (in particular

injective). We take U, V to be this neighborhood and its image, respectively.

But we note that T (z, 0) = ψ−1◦ϕ◦ρ(z), so ψ−1◦ϕ◦ρ is given by a composition

of an injective inclusion map i(z) = (z, 0) and T , and is thus injective as well.

(b) We proceed in a completely anologous matter, except that now the

di�erential is of the form (In | 0) and we take T : U → V × Rm−n to be

T (z) = (ψ−1 ◦ ϕ ◦ ρ(z), zn+1, ..., zm) and again we get that the di�erential of T

at ρ−1(x) is Im, so by the inverse function theorem T is locally invertible and

in particular onto. But ψ−1 ◦ϕ ◦ ρ(z) = p ◦T (z), where p(z) = (z1, ..., zn) is the
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(clearly surjective) projection map, and we are done.

(c) This follows directly from the inverse function theorem.

2. (a) Consider the bilinear map from C∞
c (X) ⊗ C∞

c (Y ) to C∞
c (X × Y )

sending a pair f1 ∈ C∞
c (X), f2 ∈ C∞

c (Y ) to the map f1 ⊗ f2(x, y) = f1(x)f2(y)

in C∞
c (X × Y ) (f1 ⊗ f2 is locally constant, beacause for any point (x, y) f1

is constant on some open neighborhood x ∈ U ⊆ X, and f2 is constant open

neighborhood y ∈ V ⊆ Y , so f1 � f2 is constant on U × V , which is open

in the product topology.). We claim that this map is an isomorphism. First

we show surjectivity: given f ∈ C ′∞
c (X × Y ), we claim thatwe can write f

as a �nite sum f =
∑
ci1Ui×Vv

where Ui, Vi are compact-open sets in X,Y

respectively. Indeed, note that for each point (x, y) in X × Y there exists a

neighborhood of the point on which f is constant. Note that since X,Y have

bases of open-compact sets, X × Y has a basis consisting of products of such

sets, and therefore there exist U, V open-compact such that (x, y) ∈ U × V and

f is constant on U × V . Since supp(f) is compact, we can take a �nite cover

{Ui × Vi}i=N
i=1 of supp(f). WLOG this cover is disjoint (otherwise we can re�ne

it to make it so). f is identically zero on (
⋃
Ui × Vi)

c, so f =
∑
ci1Ui×Vv

where ci is the value of f on Ui×Vi. Now note that 1Ui
, 1Vi

are locally constant

and 1Ui
⊗ 1Vi

= 1Ui×Vi
, so we have surjectivity. Injectivity: suppose that∑

cif1.i ⊗ f2,i(x, y) =
∑
cif1,i(x)f2,i(y) = 0. Assume that {f2,i} aren't all

identically zero, and that {f1,i} are linearly independent (otherwise we can

always pass to a linearly independent subset). Take some y ∈ Y such that

not all f2,i(y) are zero. Then we have for all x ∈ X,
∑
cif2,i(y)f1,i(x) = 0,

contradicting linear independence. So f2,i are all identically zero the map is

injective.

(b) Take X = Y = Z (with the discrete topology). These are clearly l-

spaces, and we have C∞
c (X) = C∞

c (Y ) are equal to the space of sequences with
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�nite support. So their duals are equal to the space of all real valued sequences.

Similarly the dual of C∞
c (X × Y ) is the space of all functions from Z× Z to R

(in�nte matrixes). So to prove that this is a counterexample we need to �nd a

function f : Z× Z → R such that there do not exist f1,i, f2.i : Z → R such that

f(m.n) =
∑
cif1,i(m)f2.i(n) for all m,n. We claim that this is the case for the

function f = 1m=n (the in�nite dimesional identity matrix). Indeed, soppose

that there exist f1.f2 such that 1m=n =
∑
cif1,i(m)f2,i(n) for allm.n. Now note

that for any �xedm, we have that {f2,i} span the vector 1n=m. But {1n=m}m∈Z

is a basis of RZ, which is an in�nite dimesional vector space-contradiction. So

C∞
c (X)⊗ C∞

c (Y ) 6= C∞
c (X × Y ), as required.

3. (a) We need to show that the map ϕ∗ induced by ϕ is a homeomorphism

of C∞
c (Rn,Rk) with itself. By symmetry it su�ces to show that the map ϕ∗

is continuous , since its inverse is also induced by a di�eomorphism (ϕ−1) in

the same way. Furthermore, we can assume WLOG that k = 1, since for the

general case we can work �component by component�. Note that ϕ∗ is linear. A

linear operator on Cc(Rn,R) is continuous i� it is sequentially continuous with

respect to the following notion of convergence:

{fn} ∈ C∞
c (Rn,R) are said to be convergent to f ∈ C∞

c (Rn,R) i�

(1){fn}
⋃
{f} are all supported in some compact set K ⊆ Rnand

(2) for every multi index α we have that ∂α(fn) tends to ∂
α(f) uniformly.

So it su�ces to show that if a sequnce{fn} tends to f (in this sense),

then {fn ◦ ϕ} tends to f ◦ ϕ. The �rst condition is certainly true, because

if {fn}
⋃
{f} are supported in some compact set K, then {fn ◦ ϕ}

⋃
{f ◦ ϕ}

are supported in ϕ−1(K), which is also compact. Proving that the second con-

dition is met is straightforward, but relies on the (rather unpleasant) formula for

higher (partial) derivatives of composite functions (the Faà di Bruno formula).
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In the one dimensional case the formula reads:

(f ◦ g)m(x) =
∑

π∈Πm

f (|π|)(g(x)) ·
∏
B∈π

g(|B|)(x)

where Πm is the set of all partitions of {1, ...,m}, B ∈ π if B is one of the

blocks of the partition π, | π | denotes the number of blocks of π, and | B |

denotes the size of the block B. We'll also denote the set of all block k-labelings

of a partition (i.e functions from the set of blocks to {1, ..., k}) by πk. The

multivariate version of this formula is then given by

∂n

∂t1∂t2...∂tm
(f◦g)(x) =

∑
π∈Πm

∑
λ∈πn

{(∏
B∈π

∂

∂λ(B)

)
f(g(x))

}
·

{∏
B∈π

[(∏
b∈B

∂

∂tb

)
gλ(B)(x)

]}

However, the exact formula isn't important for our purposes. All we need is

that when we plug in fn◦ϕ and f◦ϕ into the above, we have uniform convergence

for each summand: indeed, the left hand factors converge uniformly (beacuse

∂α(fn) tends to ∂α(f) uniformly for any multi-index) , and the right hand

factors are bounded on the compact set ϕ−1(K), which is the only region where

fn can have non vanishing partial derivatives. So we get uniform convergence

of each summand, and thus also of the entire sum.

(b) Again, by symmetry it su�ces to show the continuity of ψ∗. Also, since

ψ∗(f)(x) = (
∑

1,j ψ1,j(x)fj(x), ...,
∑

k,j ψk,j(x)fj(x)), it su�ces to show thet

for a smooth scalar function ψ ∈ C∞
c (Rn,R), we have that multiplication by ψ

induces a continuous function on C∞
c (Rn,R). So let {fn} be a sequence tending

to f in C∞
c (Rn,R). We need to show that {ψ · fn} tends to ψ ·f . Verifying that

condition (1) is met is trivial- if {fn}
⋃
{f} are supported in a compact set K,

then so are {ψ · fn}
⋃
{ψ · f}. To prove that the second condition is met we use
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Leibniz's formula:

∂α(f ∗ g) =
∑
β≤α

(
α

β

)
(∂βf) · (∂α−βg)

and again we note that we have uniform convergence in each summand, with

the left hand factors converging uniformly by assumption and the right hand

side ones being bounded in K.

4. Let f ∈ C∞
c (Rn) and let D be a di�erential operator. Note that f and all

its derivatives vanish outside of supp(f), so ‖ f ‖ D = supx∈Rn ‖ D(f)(x) ‖=

supx∈supp(f) ‖ D(f)(x) ‖ which is a supremum of a continuous function on

a compact set, and therefore �nite. Conversely, assume that f isn't compactly

supported, i.e there exists a sequence of points xm ∈ Rn such that xm → ∞ and

f(xm) 6= 0 for all m. WLOG we can assume that ‖ xm+1 − xm ‖> 1 for all m.

For each m we can construct a smooth function gm such that gm(xm) = m
f(xm)

and gm(x) = 0 for all x such that ‖ x − xm ‖> 1. We take g =
∑
gm (this is

well de�ned because at each point at most 1 of the gm are non-zero), and the

operator D(f) = g · f . So we have D(f)(xm) = m and ‖ f ‖D= ∞, as required.
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